Hitachi Automotive Systems, LTD. discusses Particleworks

“Responding to the requirement to evaluate cooling performance, Particleworks had become one of the candidates for simulation. We had used FVM (Finite Volume Method) based grid method CFD software already, and we decided to choose the more effective one by comparing the time for pre-processing and calculation speed. Simulation of the piston oil jet shows that it is unsteady, the solid region moves, and the oil occupancy in the analysis region is small. Therefore, in FVM, oil was represented by VOF (Volume of Fluid) and solid movement was controlled by morphing the remeshing based on the movement profile written in text. On the other hand, in Particleworks, oil was represented by particles, and solid movement was controlled only by the movement profile. First, we compared the time for pre-processing. It took considerable amount of time to simplify the CAD model in FVM. It meant reducing the number of meshes and simplifying fine edges, and fillets required a lot of time and effort. Such a simplification process is often necessary with the grid method in order to avoid mesh breakage when using morphing. After that the process with meshing macro creation of moving boundaries, setting of analysis conditions, and trial calculation. At this time, the CAD model was not sufficiently simplified, and the mesh was broken during the trial calculation, which caused additional man-hours to simplify the CAD model again. In contrast, Particleworks does not use meshes, so there is no need to simplify the CAD model, which saves a lot of time. In Particleworks, a shape that maps the particle values is required when evaluating the average heat transfer coefficient of the cooling channel. So, we took time to make the patch area of this shape uniform in advance. Nevertheless, when comparing the total time for pre-processing, Particleworks resulted in less than 1/3 of FVM’s” Read the full interview here:

-Hitachi Automotive Systems, LTD.