What is Particleworks?

High-speed simulation of liquid behavior such as water and oil

Particleworks is a CFD simulation software for evaluating the behavior of liquids with large scale deformation, such as water and oil. It specializes in the analysis of free surface and incompressible fluids with large scale deformation and is used in the analysis of fluid problems in a wide range of fields such as transmission and engine lubrication, motor cooling, flooded road running, agitator mixing and mixing of chemicals, resins, food, etc., as well as sediment disasters and flooding.

Mesh-free

Particleworks uses MPS, the Moving Particle Simulation Method, developed by Prof. Seiichi Koshizuka of the University of Tokyo. It does not require meshing of the computational domain as in the FDM, FVM, and FEM, and uses particles that can be moved based on the calculation results as computational points.

Therefore, once CAD geometry data is imported, you can immediately move on to pre-processing for setting analysis conditions, significantly reducing simulation time and man-hours.

Comparison of man-hours between the conventional methods and the Particleworks

Incorporating the latest research findings to help solving a variety of industrial problems

Since its release in 2009, Particleworks, a CFD simulation software from Japan, has been improved and enhanced continuously by incorporating analysis know-how from universities and industrial companies. Now its applications are diverse, and Particleworks has been in a wide range of fields, including automotive, steel/metal, medical/pharmaceutical, food/consumer goods, civil engineering, electric appliances/machinery, materials, energy/power.
What is Particleworks?

High-speed simulation of liquid behavior such as water and oil

Particleworks is a CFD simulation software for evaluating the behavior of liquids with large scale deformation, such as water and oil. It specializes in the analysis of free surface and incompressible fluids with large scale deformation and is used in the analysis of fluid problems in a wide range of fields such as transmission and engine lubrication, motor cooling, flooded road running, agitation and mixing of chemicals, resins, food, etc., as well as sediment disasters and flooding.

Mesh-free

Particleworks uses MPS, the Moving Particle Simulation Method, developed by Prof. Seiichi Koshizuka of the University of Tokyo. It does not require meshing of the computational domain as in the FDM, FVM, and FEM, and uses particles that can be moved based on the calculation results as computational points.

Therefore, once CAD geometry data is imported, you can immediately move on to pre-processing for setting analysis conditions, significantly reducing simulation time and man-hours.

Comparison of man-hours between the conventional methods and the Particleworks

Incorporating the latest research findings to help solving a variety of industrial problems

Since its release in 2009, Particleworks, a CFD simulation software from Japan, has been improved and enhanced continuously by incorporating analysis know-how from universities and industrial companies. Now its applications are diverse, and Particleworks has been in a wide range of fields, including automotive, steel/metal, medical/pharmaceutical, food/consumer goods, civil engineering, electric appliances/machinery, materials, energy/power.

Particleworks Application

- Fluidic road running and HAYABUSA search analysis
- Gear/cam internal lubrication
- Motor cooling
- Oil sloshing/oil jet in the engine
- Aeration in the engine breather system
- Cooling spray water behavior
- Extrusion molding
- Blood flow
- Mouth washing
- Shape optimization of tablets
- Pharmaceutical mixing
- Food processing mixer
- Cosmetics emulsification
- Shower heads
- Spent fuel pool sloshing
- Water flow in pressure vessel
- Soldering
- Mixing
- Melting and freezing analysis of resin
- Impregnation of composite material
- Washing machine balancer
- Swirl (rotator, mixer, agitator, kneader, mixer, stirrer, blender, etc.)
- Leak test
- Deboning/cutting/crushing
- Fresh concrete flow
- Tunnel excavation
- Coffee spilling
- Shower head water flow
- Washing machine mixing
- High-viscosity resin mixing
- Chocolate coating
- High-pressure water sprayer
- Fresh concrete flow
- Surge to the breakwater
GUI & Pre-post

Simulation Flow

**STEP 1**  Modeling
Import CAD data and define the resolution for pre-processing. The STL, OBJ, and NASTRAN formats are supported.

**STEP 2**  Condition Settings
Simply apply physical properties and movements to the model. No tedious adjustments are needed for boundary conditions.

**STEP 3**  Simulation
You can calculate the calculation using multiple CPU cores or GPUs. Additionally, you can view the results of a simulation while it is still in progress.

**STEP 4**  Post-Processing
Visualize and evaluate the simulation results using various post-processing tools. For example, you can create surface meshes and export CSV and video files.

User Interface

Particleworks’ intuitive user interface lets you handle an entire simulation from pre-processing through post-processing. You don’t have to be an expert to edit simulation parameters or keep track of multiple projects.

The 3D view window features ultra-fast, high-quality OpenGL rendering optimized for large-scale simulation with millions of particles. The window system is highly customizable, letting users compare multiple results side by side. Both Windows and Linux are supported.

Pre-Processing

All simulation conditions including material properties, physical models, and calculation conditions are defined by the user-friendly wizard.

Because you can set the viscosity as a user function, it is possible to perform analyses using time-varying viscosity models and viscosity models which viscosity changes significantly under certain conditions.

Post-Processing

**Visualization**

- Solid, wire, and transparent views
- Cross-section display
- Streamline
- Vector view
- A variety of graphs

**Surface Mesh Generator**

Surface meshes can be generated using particle locations, letting users evaluate the behavior of a fluid surface or calculate the area of a surface. Mesh data can be exported to the STL and OBJ formats.

**Grid Data Generator**

The physical quantities each particle carries can be projected onto grid points. Further visualization including contours, vectors, iso-surfaces, isolines and streamlines can be performed by using the grid data.

**Data Mapping to Polygons**

Particle data can be projected onto vertices of a polygon mesh, which can be exported as CSV or binary files. These files can be used as input into third-party mesh-based programs.

**CSV Export**

Particle data can be exported to CSV files, allowing for further data processing on quantities including coordinates, velocity, pressure, number density, and shear velocity. Force and torque against polygon walls can also be exported.

**Image and Video Export**

Simulation results and motion data can be exported to video or sequential image files, as well as still images (screenshots). The PNG, JPEG, MP4, and WMV formats are supported.

**Probing Particles, and others**

Particles can be selected and probed with a single click. Probe and particle filters allow users to calculate statistics over particles that exist within a certain range (of any quantity) or near a probe point. Other tools including the color bar, rulers, and timeline guides the users through every post-processing step.
GUI & Pre-post

Simulation Flow

**STEP 1** Modeling
Import CAD data and define the resolution for post-processing. The STL, OBJ, and NASTRAN formats are supported.

**STEP 2** Condition Settings
Simply apply physical properties and movements to the model. No tedious adjustments are needed for boundary conditions.

**STEP 3** Simulation
You can accelerate the calculation using multiple CPU cores or GPUs. Additionally, you can view the results of a simulation while it is still in progress.

**STEP 4** Post-Processing
Visualize and evaluate the simulation results using various post-processing tools. For example, you can create surface meshes and export CSV and video files.

User Interface

ParticleWorks’ intuitive user interface lets you handle an entire simulation, from pre-processing through post-processing. You don’t have to be an expert to edit simulation parameters or keep track of multiple projects.

The 3D view window features ultra-fast, high-quality OpenGL rendering optimized for large-scale simulation with millions of particles. The window system is highly customizable, letting users compare multiple results side by side. Both Windows and Linux are supported.

Pre-Processing

All simulation conditions including material properties, physical models, and calculation conditions are defined by the user-friendly wizard.

Post-Processing

**Visualization**

Solid, wire, and transparent views
Cross-section display
A variety of graphs
Streamline
Vector view
Color mapping of pressure, velocity, and temperature
Multi-view

**Surface Mesh Generator**
Surface meshes can be generated using particle locations, letting users evaluate the behavior of a fluid surface or calculate the area of a surface. Mesh data can be exported to the STL and OBJ formats.

**Grid Data Generator**
The physical quantities each particle carries can be projected onto grid points. Further visualization including contours, vectors, iso-surfaces, isolines and streamlines can be performed by using the grid data.

**Image and Video Export**
Simulation results and motion data can be exported to video or sequential image files, as well as still images (screenshots). The PNG, JPEG, MP4, and WMV formats are supported.

**Probing Particles, and others**
Particles can be selected and probed with a single click. Probes and particle filters allow users to calculate statistics over particles that exist within a certain range (of any quantity) or near a probe point. Other tools including the color bar, rulers, and time code guides the users through every post-processing step.

**Data Mapping to Polygons**
Particle data can be projected onto vertices of a polygon mesh, which can be exported as CSV or binary files. These files can be used as input to third-party mesh-based programs.

**CSV Export**
Particle data can be exported to CSV files, allowing for further data processing on quantities including coordinates, velocity, pressure, number density, and shear velocity. Force and torque against polygon walls can also be exported.
Solver Capabilities and Physics

Boundary conditions

Wall Boundaries / Moving Boundaries
Both particle and polygon walls can be selected as wall boundaries. Polygon walls are effective in reducing memory usage and speeding up calculations. It is also possible to reproduce complex movements of walls (objects) by using the motion setting function.

Inflow Boundaries
Inflow boundaries allow for the generation of fluid or powder over time. The flow can be specified by its velocity or flow rate (volume). Inflows are movable.

Moving / Periodic Boundaries
The mesh-free method allows the simulation region to be moved. This saves computational resources when simulating a large region, such as a waterway driving test. Periodic boundaries are also supported.

Viscosity

Newtonian / Non-Newtonian Fluids
Particleworks can simulate non-Newtonian fluids such as power-law or Bingham fluid as well as Newtonian fluids. For more detailed control over viscosity, you can specify custom functions or data tables.

High-Viscosity Fluids
When simulating high viscosity fluids, the explicit method tends to give a smaller time step, resulting in a longer calculation. In contrast, Particleworks’ implicit method maintains a constant time step, making it an ideal solution for such simulations.

Surface Tension

Particleworks offers two models: The CSF model calculates surface tension from the geometric shape of the object, whereas the Potential model uses interfacial energy between objects. You can set contact angles between two different states of matter, such as wall fluid and fluid fluid. Multiple non-movable fluids can be simulated, such as oil and water.

Pressure

Implicit / Explicit Methods
The explicit method speeds up calculation by giving a suitable speed of sound.

Suppression of Pressure Oscillation
Spatial pressure oscillation can be suppressed using this function, resulting in higher accuracy.

Rigid Bodies

The interaction between complex flow and non-deforming objects or rigid bodies can be analyzed straightforwardly.

Turbulence

To simulate turbulence flows, Particleworks uses a hybrid model in which LES (Large Eddy Simulation) is combined with resolution enhancement near walls.

Air Resistance

Particleworks can import data points calculated by external CFD programs (in CSV format), such as airflow field around a car body. This function is useful when analyzing the behavior of displets with air resistance.

Conjugate heat transfer analysis

Heat transfer analysis between fluids and structures has been enhanced and its performance improved.

User function definition of heat transfer coefficient

As a user function, you can define a formula for calculating the heat transfer coefficient according to the flow field.

GPU/CPU High Performance Computing

With the addition of the GPU option feature, it enables fast simulations that take advantage of NVIDIA’s CUDA GPU boards. This can significantly reduce computation time and allow you to perform high-speed calculations on a desktop PC, which is equivalent to supercomputers and HPC servers. Also, a new HPC Pack is available to expand the number of cores for parallel computing. The number of cores can be increased efficiently based on 1 Pack (16 cores). You can also install multiple packs, which allows you to assign packs to different jobs. Also, multiple packs can be installed, allowing you to assign a pack to each job.

Gas-liquid two-phase flow analysis

It enables efficient analysis of gas-liquid two-phase flows.
Solver Capabilities and Physics

Boundary conditions

Wall Boundaries / Moving Boundaries
Both particle and polygon walls can be selected as wall boundaries. Polygon walls are effective in reducing memory usage and speeding up calculations. It is also possible to reproduce complex movements of walls (objects) by using the motion setting function.

Inflow Boundaries
Inflow boundaries allow for the generation of fluid or powder over time. The flow can be specified by its velocity or flow rate (volume). Inflows are movable.

Moving / Periodic Boundaries
The mesh-free method allows the simulation region to be moved. This saves computational resources when simulating a large region, such as a wind tunnel driving test. Periodic boundaries are also supported.

Viscosity

Newtonian / Non-Newtonian Fluids
Particleworks can simulate non-Newtonian fluids such as power-law or Bingham fluid as well as Newtonian fluids. For more detailed control over viscosity, you can specify custom functions or data tables.

High-Viscosity Fluids
When simulating high viscosity fluids, the explicit method tends to give a smaller time step, resulting in a longer calculation. In contrast, Particleworks’ implicit method maintains a constant time step, making it an ideal solution for such simulations.

Surface Tension

Particleworks offers two models: The CSM model calculates surface tension from the geometric shape of the object, whereas the Potential model uses interfacial energy between objects. You can set contact angles between two different states of matter, such as wall fluid and fluid fluid. Multiple non-invasive fluids can be simulated, such as oil and water.

Pressure

Implicit / Explicit Methods
The explicit method speeds up calculation by giving a suitable speed of sound.

Suppression of Pressure Oscillation
Spatial pressure oscillation can be suppressed using this function, resulting in higher accuracy.

Rigid Bodies

The interaction between complex flow and non-deforming objects or rigid bodies can be analyzed straightforwardly.

Turbulence

To simulate turbulence flows, Particleworks uses a hybrid model in which LES (Large Eddy Simulation) is combined with resolution enhancement near walls.

Air Resistance

Particleworks can import data points calculated by external CFD programs (in CSV format), such as airflow field around a car body. This function is useful when analyzing the behavior of droplets with air resistance.

Conjugate heat transfer analysis

Heat transfer analysis between fluids and structures has been enhanced and its performance improved.

User function definition of heat transfer coefficient

As a user function, you can define a formula for calculating the heat transfer coefficient according to the flow field.

GPU/CPU High Performance Computing

With the addition of the GPU option feature, it enables fast simulations that take advantage of NVIDIA’s CUDA GPU boards. This can significantly reduce computation time and allow you to perform high-speed calculations on a desktop PC, which is equivalent to supercomputers and HPC servers. Also, a new HPC Pack is available to expand the number of cores for parallel computing. The number of cores can be increased efficiently based on 1 Pack (16 cores). You can also install multiple packs, which allows you to assign packs to different jobs. Also, multiple packs can be installed, allowing you to assign a pack to each job.
Multiphysics Solution

Particleworks can be coupled with Prometech’s granular material simulator Granuleworks, and 3rd party software tools that analyze structural, crash, motion, fluid, and electro-magnetic behaviors. This allows users to evaluate the design to achieve more realistic physical phenomena.

### Powder-Liquid Flow

By combining Granuleworks’ DEM (Discrete Element Method) and Particleworks’ MPS, you can simulate the motion of powder particles in fluids. Aeration analysis, which can evaluate bubble behavior to predict engine oil behavior and chemical processes in storage tanks, is available. This feature comes in handy when examining design issues related to bubbles. You can:
- Choose the size of simulated bubbles
- Calculate buoyancy force, wall force, drag force, bubble extinction, bubble coalescence, and bubble breakage
- View statistics for spatial distributions of bubbles based on size
- Visualize and spot issues related to bubble behavior

### Motion-Fluid

If Particleworks is used alone, the motion of bodies is defined by the user. Coupling Particleworks with RecurDyn, a multi-body dynamics simulation package developed by FunctionBay, Inc., allows for the bodies to move according to the laws of physics. In Particleworks x RecurDyn coupling, the physics of the fluid, computed by Particleworks, and the physics of the mechanical system, computed by RecurDyn, are completely, bidirectionally coupled, enabling accurate simulation of fluid-structure interaction.

RecurDyn supports fluid interaction with both rigid and flexible bodies. This permits fluid interaction with bodies experiencing large deformation, and it permits the calculation of deformation, stresses, and strains imparted to bodies by fluid forces.

---

### Fluid - Heat generation and temperature distribution prediction

Conjugate heat transfer analysis feature added in Particleworks 7.0 allows you to predict cooling by oil and water such as engine cylinder head cooling, motor cooling, steel plate cooling, etc.

---

### Coupling with various CAE tools

The results of the fluid simulation of Particleworks can be used in 3rd party CAE tools such as Abaqus, ANSYS, MSC/NASTRAN, NX Nastran, LS-DYNA, and JMag.

Physical quantity data (coordinates, pressure values, heat transfer coefficients, etc.) for Particleworks can be output as a CSV file and be converted into a format that allows you to use in other CAE tools, as the boundary conditions.

It can also be used with optimization software tools such as OPTIMUS or modelFRONTIER.

---

### Particleworks for ANSYS (option program)

Particleworks for ANSYS is an interface option for coupling analysis between Particleworks and ANSYS. By using this, Particleworks can be used in ANSYS Workbench environment and this makes it possible to simulate complicated multiphysics behaviors, including liquid-structure, liquid-thermal, and gas-liquid flow easily.

---

### Visualization Option (option program)

Visualization Option converts the simulation results of Particleworks and Granuleworks into a general-purpose CG format and enables CG editing and rendering using CG software. It streamlines visualization from CAE simulation results and accelerates video creation and VR/WAR/MD content development.
**Multiphysics Solution**

Particleworks can be coupled with Prometech's granular material simulator Granuleworks, and 3rd party software tools that analyze structural, crash, motion, fluid, and electro-magnetic behaviors. This allows users to evaluate the design to achieve more realistic physical phenomena.

**Powder-Liquid Flow**

By combining Granuleworks’ DEM (Discrete Element Method) and Particleworks’ MPS, you can simulate the motion of powder particles in fluids. Aeration analysis, which can evaluate bubble behavior to predict engine oil behavior and chemical processes in storage tanks, is available. This feature comes in handy when examining design issues related to bubbles. You can:
- Choose the size of simulated bubbles
- Calculate buoyancy force, wall force, drag force, bubble extinction, bubble coalescence, and bubble breakage
- View statistics for spatial distributions of bubbles based on size
- Visualize and spot issues related to bubble behavior

**Motion-Fluid**

If Particleworks is used alone, the motion of bodies is defined by the user. Coupling Particleworks with RecurDyn, a multi-body dynamics simulation package developed by FunctionBay, Inc., allows for the bodies to move according to the laws of physics. In Particleworks x RecurDyn coupling, the physics of the fluid, computed by Particleworks, and the physics of the mechanical system, computed by RecurDyn, are completely, bidirectionally coupled, enabling accurate simulation of fluid-structure interaction.

RecurDyn supports fluid interaction with both rigid and flexible bodies. This permits fluid interaction with bodies experiencing large deformation, and it permits the calculation of deformation, stresses, and strains imparted to bodies by fluid forces.

**Fluid - Heat generation and temperature distribution prediction**

Conjugate heat transfer analysis feature added in Particleworks 7.0 allows you to predict cooling by oil and water such as engine cylinder head cooling, motor cooling, steel plate cooling, etc.

**Coupling with various CAE tools**

The results of the fluid simulation of Particleworks can be used in third party CAE tools such as Abaqus, ANSYS, MSC/Nastran, NX Nastran, LS-DYNA, and JMAG.

Physical quantity data (coordinates, pressure values, heat transfer coefficients, etc.) for Particleworks can be output as a CSV file and be converted into a format that allows you to use in other CAE tools, as the boundary conditions.

It can also be used with optimization software tools such as OPTIMUS or modelFRONTIER.

**Particleworks for ANSYS (option program)**

Particleworks for ANSYS is an interface option for coupling analysis between Particleworks and ANSYS.

By using this, Particleworks can be used in ANSYS Workbench environment and it makes it possible to simulate complicated multiphysics behaviors including liquid-structure, liquid-thermal, and gas-liquid flow easily.

**Visualization Option (option program)**

Visualization Option converts the simulation results of Particleworks and Granuleworks into a general-purpose CG format and enables CG editing and rendering using CG software. It streamlines visualization from CAE simulation results and accelerates video creation and VR/VR/AR/MD content development.
The MPS method was originally proposed by Prof. Koshizuka at the University of Tokyo, who is a co-founder of Prometech Software. Flexible modeling, capability of simulating complex moving boundary problems and multi-physics are the main assets of the MPS Method.

Conventional grid method

Grid methods (e.g. FDM, FEM, FV) use computational grids called meshes to calculate physical properties (e.g. pressure, flow velocity). Meshes need to be set in advance both in the region where fluid is present in the first state and in the state where fluid may flow. The fluid flows from one mesh to the adjacent mesh. This is where the inflow and outflow of mass and momentum of each mesh are calculated. The following obstacles are raised with regard to such a grid method:

- Meshes need to be created by predicting the fluid flow areas. Calculations will fail when the mesh is not defined, or when the fluid flows in unexpected directions. Unnecessary calculations will perform when meshes are not used.
- Mesh generation for complex shapes require a lot of man-hours. (e.g. automotive gearboxes, air conditioning heat exchangers).
- The mesh arrangement and density need to be set in consideration of the flow direction and flow velocity distribution etc. due to the mesh dependency in fluid analysis. Adequate knowledge and experience is required in order to carry out highly accurate calculations.
- Collapsing meshes and abnormal termination calculations are common with analyses with large mesh deformations.

MPS

MPS allows the fluid itself to be modeled with particles without using a grid determining space. These "particles" are "calculation points" for flow velocity and pressure that correspond to grid points for grid methods. They do not represent substances such as water droplets. These are some of the benefits of the Particle Method that reduce analysis man-hours in both design and development.

- No need to set the analysis region in advance. The particles themselves represent the flow of fluid. This is optimal for tracking conditions where fluid droplets are widely scattered. The free surface is naturally visualized by particle distribution.
- Easily modeling of the fluid parts with CAD data of the walls, even for containers and piping of complex shapes. Only the initial particle spacing needs to be specified. Particles are evenly distributed according to the specified spacing. This results in a drastically reduced preparation process of the analysis model and allows engineers to focus on analyses and result validation.
- No abnormal termination and mesh collapsing issues.

References

- Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics
- Authors: Seisuke Koshizuka, Kazuay Shibata, MasaYoshi Kondo, Takuya Kutsuna
- Publisher: ELSEVIER
- May/2018
## Capabilities Chart

### Solver

<table>
<thead>
<tr>
<th>Physical model / Feature</th>
<th>Viscosity model</th>
<th>Pressure term solution</th>
<th>Viscosity term solution</th>
<th>Tumble model</th>
<th>Airflow</th>
<th>Surfactant model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable head</td>
<td>Impulse / implicit method</td>
<td>Implicit / implicit method</td>
<td>3D Modeler of multi-phase model</td>
<td>VOF model</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Boundary conditions

<table>
<thead>
<tr>
<th></th>
<th>Particle wall</th>
<th>Flow profile</th>
<th>Adhesion boundary</th>
<th>Isothermal boundary, thermal calculation</th>
<th>Inflow boundary</th>
<th>Outflow boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forced motion / accommodation / flowing boundary</td>
<td>Forced motion / accommodation / flowing boundary</td>
<td>Adhesion boundary / isothermal boundary, thermal calculation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Pre / Postprocessing

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Pre-Processing / Visualization

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Par/Parallel processing

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Pre-Processing / Postprocessing

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Pre-Processing / Visualization

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## MPS – The Moving Particle Simulation Method

The MPS method was originally proposed by Prof. Koshizuka at the University of Tokyo, who is a co-founder of Prometech Software. Flexible modeling, capability of simulating complex moving boundary problems and multi-physics are the main assets of the MPS Method.

### Conventional grid method

Grid methods (e.g. FDM, FEM, FVM) use computational grids called meshes to calculate physical properties (e.g. pressure, flow velocity). Meshes need to be set in advance both in the region where fluid is present in the initial state and in the region where fluid may flow. The fluid flows from one mesh to the adjacent mesh. This is where the inflow and outflow of mass and momentum of each mesh are calculated. The following obstacles are raised with regard to such a grid method:

- Meshes need to be created by predicting the fluid flow areas. Calculations will fail when the mesh is not defined, or when the fluid flows in unexpected directions. Unnecessary calculations will perform when meshes are not used.
- Mesh generation for complex shapes require a lot of man-hours. (e.g. automotive gearboxes, air conditioning heat exchangers).
- The mesh arrangement and density need to be set in consideration of the flow direction and flow velocity distribution etc. due to the mesh dependency in fluid analysis. Adequate knowledge and experience is required in order to carry out highly accurate calculations.
- Collapsing meshes and abnormal termination calculations are common with analyses with large mesh deformations.

### MPS

MPS allows the fluid itself to be modeled with particles without using a grid determining space. These "particles" are calculation points for flow velocity and pressure that correspond to grid points for grid methods. They do not represent substances such as water droplets. These are some of the benefits of the Particle Method that reduce analysis man-hours in both design and development.

- No need to set the analysis region in advance. The particles themselves represent the flow of fluid. This is optimal for tracking conditions where fluid droplets are widely scattered. The free surface is naturally visualized by particle distribution.
- Easily modeling of the fluid part with CAD data of the walls, even for containers and piping of complex shapes. Only the initial particle spacing needs to be specified. Particles are evenly distributed according to the specified spacing. This results in a drastically reduced preparation process of the analysis model and allows engineers to focus on analyses and result validation.
- No abnormal termination and mesh collapsing issues.

### References

Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics

Authors: Seiichi Koshizuka, Kazuya Shibata, Masahiro Kondo, Takuya Watanaga

Publisher: ELSEVIER

May 2018

![MPS Diagram](image-url)
Meshfree liquid flow simulation